Preisvergleich / Suche / Wohnen / Büro / Laplacian Eigenvectors of Graphs, Fachbücher von Josef Leydold, Peter F. Stadler, Türker Biyikoglu
Thumbnail - Laplacian Eigenvectors of Graphs, Fachbücher von Josef Leydold, Peter F. Stadler, Türker Biyikoglu

Laplacian Eigenvectors of Graphs, Fachbücher von Josef Leydold, Peter F. Stadler, Türker Biyikoglu

This fascinating volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domai... Mehr erfahren

Sammle bis zu 21 Punkte mit diesem Produkt

Finde die besten Angebote

Bester Preis21 Punkte
Logo - Galaxus

Galaxus

Versandkostenfrei

Lieferzeit: 2-4 Werktage

42,79 €

Versandkostenfrei | Lieferzeit: 2-4 Werktage
Icon Preiswecker.

Mit dem Preiswecker immer das beste Angebot

Beobachte Preise und erhalte E-Mails, wenn sich etwas ändert.

Ähnliche Produkte

Produktdetails

This fascinating volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, and graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology. Eigenvectors of graph Laplacians may seem a surprising topic for a book, but the authors show that there are subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) "Geometric” properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors.The volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains”), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology.

Informationen

Lieferzeit:2-4 Werktage
Marke:Springer